Perspectives on Neutron Scattering in Lanthanide- Based Single-Molecule Magnets and a Case Study of the Tb2(-N2) System

نویسندگان

  • Krunoslav Prša
  • Joscha Nehrkorn
  • Jordan F. Corbey
  • William J. Evans
  • Selvan Demir
  • Jeffrey R. Long
  • Tatiana Guidi
  • Oliver Waldmann
چکیده

Single-molecule magnets (SMMs) based on lanthanide ions display the largest known blocking temperatures and are the best candidates for molecular magnetic devices. Understanding their physical properties is a paramount task for the further development of the field. In particular, for the poly-nuclear variety of lanthanide SMMs, a proper understanding of the magnetic exchange interaction is crucial. We discuss the strengths and weaknesses of the neutron scattering technique in the study of these materials and particularly for the determination of exchange. We illustrate these points by presenting the results of a comprehensive inelastic neutron scattering study aimed at a radical-bridged diterbium(III) cluster, Tb2(μ-N2), which exhibits the largest blocking temperature for a poly-nuclear SMM. Results on the YIII analogue Y2(μ-N2) and the parent compound Tb2(μ-N2) (showing no SMM features) are also reported. The results on the parent compound include the first direct determination of the lanthanide-lanthanide exchange interaction in a molecular cluster based on inelastic neutron scattering. In the SMM compound, the resulting physical picture remains incomplete due to the difficulties inherent to the problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ابررساناهای دمای بالا- با دید نوترونها

  Neutron scattering is proved to be a vital probe in unveiling the magnetic properties of high temperature superconductors (HTSC). Detailed information about the energy and momentum dependence of the magnetic dynamics of HTSC have been obtained directly by this technique. Over the past decade by improving the crystal growth methods, large and high quality single crystals of HTSC, which are ess...

متن کامل

Lanthanide single molecule magnets: progress and perspective.

The last few years have seen a huge renaissance in the study of single molecule magnets (SMMs) thanks to the extensive applications of lanthanide ions with large inherent anisotropy in molecular magnetism. Particularly, the recent theoretical developments and the experimental expansion into the organometallic avenue have led to an eye-catching boost in this field. Here we highlight the recent p...

متن کامل

Heterometallic 3d-4f single-molecule magnets.

The promising potential applications, such as information processing and storage or molecular spintronics, of single-molecule magnets (SMMs) have spurred on the research of new, better SMMs. In this context, lanthanide ions have been seen as ideal candidates for new heterometallic transition metal-lanthanide SMMs. This perspective reviews 3d-4f SMMs up to 2014 and highlights the most significan...

متن کامل

Scattering Study of Conductive-Dielectric Nano/Micro-Grained Single Crystals Based on Poly(ethylene glycol), Poly(3-hexyl thiophene) and Polyaniline

Two types of rod-coil block copolymers including poly(3-hexylthiophene)-block-poly(ethylene glycol) (P3HT-b-PEG) and PEG-block-polyaniline (PANI) were synthesized using Grignard metathesis polymerization, Suzuki coupling, and interfacial polymerization. Afterward, two types of single crystals were grown by self-seeding methodology to investigate the coily and rod blocks in grafted brushes and o...

متن کامل

Exploiting single-ion anisotropy in the design of f-element single-molecule magnets

Scientists have long employed lanthanide elements in the design of materials with extraordinary magnetic properties, including the strongest magnets known, SmCo5 and Nd2Fe14B. The properties of these materials are largely a product of fine-tuning the interaction between the lanthanide ion and the crystal lattice. Recently, synthetic chemists have begun to utilize f-elements—both lanthanides and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016